Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain

نویسندگان

  • Ian En-Hsu Yen
  • Xiangru Huang
  • Kai Zhong
  • Ruohan Zhang
  • Pradeep Ravikumar
  • Inderjit S. Dhillon
چکیده

Many applications of machine learning involve structured outputs with large domains, where learning of a structured predictor is prohibitive due to repetitive calls to an expensive inference oracle. In this work, we show that by decomposing training of a Structural Support Vector Machine (SVM) into a series of multiclass SVM problems connected through messages, one can replace an expensive structured oracle with Factorwise Maximization Oracles (FMOs) that allow efficient implementation of complexity sublinear to the factor domain. A Greedy Direction Method of Multiplier (GDMM) algorithm is then proposed to exploit the sparsity of messages while guarantees convergence to sub-optimality after O(log(1/ )) passes of FMOs over every factor. We conduct experiments on chain-structured and fully-connected problems of large output domains, where the proposed approach is orders-of-magnitude faster than current state-of-the-art algorithms for training Structural SVMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Linearization Based Optimization for Multi-class SVM

We propose a novel partial linearization based approach for optimizing the multi-class svm learning problem. Our method is an intuitive generalization of the Frank-Wolfe and the exponentiated gradient algorithms. In particular, it allows us to combine several of their desirable qualities into one approach: (i) the use of an expectation oracle (which provides the marginals over each output class...

متن کامل

The effect of structural changes in higher education sector on regional output (Case study: Sistan and Baluchestan Province)

Abstract The aim of this study is of the effect of structural changes in higher education on changes of output in Sistan and Baluchestan Province using structural decomposition analysis (SDA). The input-output tables of this region for the period 2006-2011 have been employed as the database of the model. The structural changes were decomposed into two factors: changes in share of specific sect...

متن کامل

How to Deal with Large Dataset, Class Imbalance and Binary Output in SVM based Response Model

Support Vector Machine (SVM) employs Structural Risk Minimization (SRM) principle to generalize better than conventional machine learning methods employing the traditional Empirical Risk Minimization (ERM) principle. When applying SVM to response modeling in direct marketing, however, one has to deal with the practical difficulties: large training data, class imbalance and binary SVM output. Th...

متن کامل

Dual coordinate solvers for large-scale structural SVMs

This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression, and structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online algorithms which can process out-of-core datasets. The former typically req...

متن کامل

Efficient Decomposed Learning for Structured Prediction

Structured prediction is the cornerstone of several machine learning applications. Unfortunately, in structured prediction settings with expressive inter-variable interactions, exact inference-based learning algorithms, e.g. Structural SVM, are often intractable. We present a new way, Decomposed Learning (DecL), which performs efficient learning by restricting the inference step to a limited pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016